geowatch.tasks.fusion.architectures.sits module¶
import sys sys.path.append(‘/home/joncrall/code/SITS-Former/code’) from model import classification_model as clf
import liberator lib = liberator.Liberator() lib.add_dynamic(clf.BERTClassification) lib.expand([‘model’]) print(lib.current_sourcecode())
- class geowatch.tasks.fusion.architectures.sits.PositionalEncoding(d_model, max_len=366)[source]¶
Bases:
Module
- class geowatch.tasks.fusion.architectures.sits.BERTEmbedding(num_features, dropout=0.1)[source]¶
Bases:
Module
- BERT Embedding which is consisted with under features
InputEmbedding : project the input to embedding size through a lightweight 3D-CNN
PositionalEncoding : adding positional information using sin/cos functions
sum of both features are output of BERTEmbedding
- Parameters:
num_features – number of input features
dropout – dropout rate
- class geowatch.tasks.fusion.architectures.sits.BERT(num_features, hidden, n_layers, attn_heads, dropout=0.1)[source]¶
Bases:
Module
- Parameters:
num_features – number of input features
hidden – hidden size of the SITS-Former model
n_layers – numbers of Transformer blocks (layers)
attn_heads – number of attention heads
dropout – dropout rate