geowatch.tasks.cold.tile_processing_kwcoco module¶
This is step 2/4 in predict.py and the step that runs pycold
SeeAlso
predict.py
prepare_kwcoco.py
tile_processing_kwcoco.py
export_cold_result_kwcoco.py
assemble_cold_result_kwcoco.py
This script is for running COLD algorithm with kwcoco dataset. See original code: ~/code/pycold/src/python/pycold/imagetool/tile_processing.py
- class geowatch.tasks.cold.tile_processing_kwcoco.TileProcessingKwcocoConfig(*args, **kwargs)[source]¶
Bases:
DataConfig
The docstring will be the description in the CLI help
Valid options: []
- Parameters:
*args – positional arguments for this data config
**kwargs – keyword arguments for this data config
- default = {'b_c2': <Value(True)>, 'cm_interval': <Value(60)>, 'conse': <Value(6)>, 'method': <Value('COLD')>, 'n_cores': <Value(None)>, 'prob': <Value(0.99)>, 'rank': <Value(None)>, 'reccg_path': <Value(None)>, 'stack_path': <Value(None)>}¶
- geowatch.tasks.cold.tile_processing_kwcoco.tile_process_main(cmdline=1, **kwargs)[source]¶
- Parameters:
n_cores (type=int) – _description_
stack_path (_type_) – _description_
reccg_path (_type_) – _description_
method (_type_) – _description_
year_lowbound (_type_) – _description_
year_highbound (_type_) – _description_
b_c2 (_type_) – _description_
cmdline (int, optional) – _description_. Defaults to 1.
Example
>>> # xdoctest: +REQUIRES(env:TEST_COLD) >>> from geowatch.tasks.cold.tile_processing_kwcoco import tile_process_main >>> from geowatch.tasks.cold.tile_processing_kwcoco import * >>> import ubelt as ub >>> kwargs= dict( >>> rank = 1, >>> n_cores = 1, >>> stack_path = ub.Path('/gpfs/scratchfs1/zhz18039/jws18003/kwcoco/stacked/KR_R001'), >>> reccg_path = ub.Path('/gpfs/scratchfs1/zhz18039/jws18003/kwcoco/reccg/KR_R001'), >>> method = 'COLD', >>> b_c2 = True, >>> prob = 0.99, >>> conse = 6, >>> cm_interval = 60, >>> ) >>> cmdline=0 >>> tile_process_main(cmdline, **kwargs)
- geowatch.tasks.cold.tile_processing_kwcoco.is_finished_cold_blockfinished(reccg_path, nblocks)[source]¶
check if the COLD algorithm finishes all blocks
- Parameters:
reccg_path (str) – the path that save COLD results
nblocks (int) – the block number
- Returns:
True if all block finished
- Return type:
- geowatch.tasks.cold.tile_processing_kwcoco.get_stack_date(block_x, block_y, stack_path, year_lowbound=0, year_highbound=0, nband=8)[source]¶
- Parameters:
block_x – block id at x axis
block_y – block id at y axis
stack_path – stack path
year_lowbound – ordinal data of low bounds of selection date range
year_highbound – ordinal data of upper bounds of selection date range
- Returns:
img_tstack, img_dates_sorted img_tstack - 3-d array (block_width * block_height, nband, nimage)
- Return type:
Tuple
- geowatch.tasks.cold.tile_processing_kwcoco.reading_start_dates_nmaps(stack_path, year_lowbound, year_highbound, cm_interval)[source]¶
- Parameters:
stack_path (str) – stack_path for saving starting_last_dates.txt
cm_interval (interval) – day interval for outputting change magnitudes
- Returns:
(starting_date, n_cm_maps) starting_date - starting date is the first date of the whole dataset, n_cm_maps - the number of change magnitudes to be outputted per pixel per band
- Return type:
Tuple
- geowatch.tasks.cold.tile_processing_kwcoco.is_finished_assemble_cmmaps(cmmap_path, n_cm, starting_date, cm_interval)[source]¶
- Parameters:
cmmap_path – the path for saving change magnitude maps
n_cm – the number of change magnitudes outputted per pixel
starting_date – the starting date of the whole dataset
cm_interval – the day interval for outputting change magnitudes
- Returns:
True -> assemble finished
- Return type: